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Symposium: Molecular Mechanisms of Protective Effects of
Vitamin E in Atherosclerosis

Nonantioxidant Functions of a-Tocopherol in Smooth Muscle Cells1,2

Angelo Azzi,3 Isabel Breyer, Maria Feher, Roberta Ricciarelli, Achim Stocker,
Sabine Zimmer and Jean-Marc Zingg

Institute of Biochemistry and Molecular Biology, 3012 Bern, Switzerland

ABSTRACT Most tocopherols and tocotrienols, with the exception of a-tocopherol, are not retained by humans.
This suggests that a-tocopherol is recognized uniquely; therefore, it may exert an exclusive function. a-Tocopherol
possesses distinct properties that are independent of its prooxidant, antioxidant or radical-scavenging ability.
a-Tocopherol specifically inhibits protein kinase C, the growth of certain cells and the transcription of the CD36 and
collagenase genes. Activation events have also been seen on the protein phosphatase 2A (PP2A) and on the
expression of other genes (a-tropomyosin and connective tissue growth factor). Neither b-tocopherol nor probucol
possessed the same specialty functions as a-tocopherol. Recently, we isolated a new ubiquitous cytosolic
a-tocopherol binding protein (TAP). Its motifs suggest that it is a member of the hydrophobic ligand-binding protein
family (CRAL-TRIO). TAP may also be involved in the regulation of cellular a-tocopherol concentration and
a-tocopherol–mediated signaling. J. Nutr. 131: 378S–381S, 2001.

KEY WORDS: ● tocotrienols ● tocopherols ● cell signaling ● a-tocopherol binding protein

In 1922, Evans and Bishops named the animal nutritional
factor essential of reproduction “Vitamin E” (1). Later, in the
1960s, it was associated with antioxidant function (2); non-
oxidant properties were discovered 25 y after that (3,4). a-To-
copherol is the member of the vitamin E group (a-, b-, g- and
d-tocopherols and tocotrienols) with the most biologically
significant properties (5–9). Unlike others in the vitamin E
group, a-tocopherol is found predominantly in mammalian
tissue, rather than in plants (10–13).

When a-tocopherol is attacked by fatty acid peroxy radi-
cals, it becomes, via one-electron oxidation, the a-tocopheryl
radical; as a consequence of two-electron oxidation, it be-
comes a-tocopherylquinone. Under physiologic conditions,
the reducing agents, ascorbic acid and lypoic acid, continu-
ously repair oxidized a-tocopherol, thus preventing a loss of
a-tocopherol–dependent cell-signaling events. If the rate of
oxidation is greater than the rate of repair, a-tocopherol
concentrations in the body will decrease.

Low levels of a-tocopherol have been associated with in-
creased incidence of coronary artery disease. Conversely, in-
creased intake of a-tocopherol has been shown to have pro-
tective effects against heart disease. Advances have been made
in understanding the molecular basis of atherogenesis, eluci-
dating functions of a-tocopherol beyond that of preventing
LDL oxidation. We are on the verge of understanding the
regulatory, nonoxidative response to a-tocopherol by crucial
cells. Such responses include inhibition of smooth muscle cell
proliferation, preservation of endothelial function, inhibition
of monocyte-endothelial adhesion, inhibition of monocyte
reactive oxygen species and cytokine release, and inhibition of
platelet adhesion and aggregation.

These cellular responses to a-tocopherol are associated
with transcriptional and post-transcriptional events. Activa-
tion of diacylglycerol kinase and protein phosphatase 2A
(PP2A),4 and the inhibition of protein kinase C (PKC), cy-
clooxygenase, lipoxygenase and cytokine release by a-tocoph-
erol are all examples of post-transcriptional regulation. a-To-
copherol also modulates the transcriptional regulation of a
number of genes, including the liver collagen aI gene, the
a-tocopherol transfer protein gene, the a-tropomyosin gene
and the collagenase (metallo-proteinase 1) gene. In recent
years, several reviews have reported on the action of a-tocoph-
erol at the cellular level (14–20). This brief report will em-
phasize the nonantioxidant role of a-tocopherol in cellular
modulation.

1 Presented as part of the symposium, Molecular Mechanisms of Protective
Effects of Vitamin E in Atherosclerosis, given at Experimental Biology 2000, April
16, 2000 in San Diego, CA. This symposium was sponsored by the American
Society for Nutritional Sciences and was supported by an educational grant from
Archer Daniels Midland Company and BASF corporation. The proceedings of this
conference are published as a supplement to The Journal of Nutrition. Guest
editors for the supplement publication were Mohsen Meydani, Tufts School of
Nutrition Science and Policy and Jean Mayer USDA Human Nutrition Research
Center on Aging at Tufts University, Boston, MA and Maret G. Traber, Linus
Pauling Institute, Oregon State University, Corvallis, OR and University of Cali-
fornia, Davis, School of Medicine, Sacramento, CA.

2 Supported by the Swiss National Science Foundation, by F. Hoffmann-La-
Roche, AG and by the Stiftung für Ernährungsforschung in der Schweiz.

3 To whom correspondence should be addressed.
E-mail: angelo.azzi@mci.unibe.ch.

4 Abbreviations: IL, interleukin; PKC, protein kinase C; PP2A, protein phos-
phatase 2A; TAP, tocopherol-associated protein.
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Inhibition of PKC and associated cellular functions

Inhibition of PKC activity by a-tocopherol was discovered
in 1991 to be the cause of the inhibition of vascular smooth
muscle cell proliferation by a-tocopherol (3,4,21–25). Subse-
quent reports have confirmed that the inhibition of PKC by
a-tocopherol occurs in different cell types such as monocytes,
macrophages, neutrophils, fibroblasts and also mesangial cells
(14,26–38). a-Tocopherol was also found to inhibit throm-
bin-induced PKC activation and endothelin secretion in edo-
thelial cells; b-tocopherol did not have a similar ability (39).
a-Tocopherol inhibits phorbol ester–induced shape changes in
erythroleukemia cells (40), and also inhibits PKC-mediated
neutrophil-superoxide generation (31). In animal models of
atherosclerosis, PKC inhibition by a-tocopherol has also been
demonstrated (41,42). a-Tocopherol inhibits PKC activity in
a specific manner because b-tocopherol or Trolox (43) does
not exert such an effect. a-Tocopherol also produces a signif-
icant decrease in monocyte superoxide anion release, lipid
oxidation, and interleukin-1 (IL-1 b) release and adhesion to
the endothelium. A similar antioxidant, b-tocopherol, had no
effect on IL-1 b release (44). a-Tocopherol inhibits produc-
tion of chemokines and inflammatory cytokines in addition to
inhibition of adhesion of monocytes to human aortic endo-
thelial cells by reducing the expression of adhesion molecules
when cells are activated by inflammatory cytokines (45).

The proliferation and inhibition of PKC by a physiologic
concentration of a-tocopherol are parallel events in vascular
smooth muscle cells (46–48). b-Tocopherol is ineffective in
either process and prevents the inhibitory effect of a-tocoph-
erol. Because a-tocopherol and b-tocopherol have very similar
radical-scavenging abilities, it is clear that the mechanism by
which a-tocopherol acts on PKC is not related to these scav-
enging properties (49). Inhibition by a-tocopherol may be
seen only at the cellular level and is not evident with recom-
binant PKC. The inhibitory effect of a-tocopherol on PKC
can be correlated to a dephosphorylation of PKCa. PP2A can
be activated in vitro by treatment with a-tocopherol (50,51).
This event may be crucial to the dephosphorylation of PKC
and its subsequent decrease in activity.

a-Tocopherol has a PKC-mediated protective effect on
human mesangial cells when exposed to high glucose concen-
trations (37). Our group observed a similar protective effect
(50, 51). In the studies of King’s group (37), PKC b-isoform
expression was induced by high glucose. Interestingly, high
glucose is concurrently responsible for an increase in diacyl-
glycerol synthesis. It can be concluded that, although the
mechanism of PKC inhibition by a-tocopherol has been in-
terpreted differently in different laboratories and cellular sys-
tems, considerable agreement exists concerning the inhibition
of PKC by a-tocopherol.

Transcriptional regulation of cellular reactions

a-Tocopherol concentration in organisms is dependent
upon its uptake and destruction in radical reactions. Because
of this, modulation of gene expression takes place as a-tocoph-
erol concentrations increase or decrease (52). a-Tropomyosin
expression is upregulated by a-tocopherol, but not by b-to-
copherol, in rat vascular smooth muscle cells (53) in a reaction
not mediated by PKC. Age-dependent increase of collagenase
(MPP1) expression can be reduced by a-tocopherol (54) in
human skin fibroblasts.

The liver a-tocopherol transfer protein and its mRNA are
modulated by dietary vitamin E deficiencies in rats (55), and
a- and b-tocopherol induce expression of hepatic a-tocoph-

erol transfer protein mRNA (56,57). Scavenger receptors are
also under a-tocopherol control. a-Tocopherol downregulates
the activity of class A scavenger receptors in macrophages
(58). Another scavenger receptor gene, CD36, is downregu-
lated at the transcriptional level by a-tocopherol in macro-
phages and smooth muscles cells. b-Tocopherol, however,
does not have this regulating ability (59). In conclusion, it
appears that a-tocopherol is able to regulate the expression of
a number of genes that are correlated with a-tocopherol–
associated pathologies. To what extent these regulatory events
are the direct consequence of the interaction of a-tocopherol
with a receptor, a transcription factor or an element of the
signal transduction pathways (e.g., PKC or phosphatase) re-
mains a matter of investigation.

a-Tocopherol–associated protein (TAP)

Showing that a-tocopherol is involved in the regulation of
several genes offers a very challenging opportunity for future
studies. Here, only the existence of a common denominator
(an a-tocopherol receptor protein, an a-tocopherol sensitive
promoter element or an a-tocopherol sensitive transcription
factor) has been postulated. Using molecular cloning into
Escherichia coli and in vitro expression, we recently identified a
human (hTAP) and bovine TAP (60). This protein appears to
belong to a family of hydrophobic ligand-binding proteins,
which all have the CRAL (cis-retinal binding motif) sequence
in common. By using a biotinylated a-tocopherol derivative
and the IASys resonant mirror biosensor, the purified recom-
binant protein was shown to bind tocopherol at a specific
binding site with a Kd of 4.6 3 1027 mol/L. Northern analysis
shows that hTAP mRNA has a size of ;2.8k bp and is
expressed ubiquitously. The highest amounts of hTAP message
are found in the liver, brain and prostate. In conclusion, hTAP
has significant sequence homology with proteins containing
the CRAL-TRIO structural motif (RALBP, CRALBP, a-TTP,
SEC 14, PTN 9, RSEC 45). TAP binds specifically to a-to-
copherol and biotinylated tocopherol, suggesting the existence
of a hydrophobic pocket possibly analogous to that of SEC14.

The newly discovered TAP is coded for in the human
genome by three genes having slightly different 39-sequences.
The real function of these three genes products cannot be
predicted precisely, but the very existence of three copies and
their ubiquitous distribution point towards an important cel-
lular role. Unbiased hypotheses may consider TAP a cellular
binding or interorganelle transport protein, although the pos-
sibility of the identification of TAP with a cell receptor, a
coreceptor or a transcription factor modulator cannot be un-

TABLE 1

Effect of a-tocopherol and b-tocopherol on protein kinase
C-a phosphorylation state, autophosphorylating activity and

activity towards Histone III-S1

32P-Protein
kinase Ca

Autophosphorylating
activity of protein

kinase C-a
Histone
activity

Cell
proliferation

%

PMA2 100 100 100 100
a-Tocopherol 18.5 36.4 56.0 30
b-Tocopherol 74.1 84.9 79.0 90

1 Source: Ref. 25.
2 PMA, phorbol myristate acetate.
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derestimated. Coprecipitation experiments and two hybrid
studies in progress in our laboratory may give indications, by
nearest-neighbor protein interactions, concerning the func-
tion of these new cellular tocopherol binding proteins.
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